MONK - Outlier-Robust Mean Embedding Estimation by Median-of-Means
نویسندگان
چکیده
Mean embeddings provide an extremely flexible and powerful tool in machine learning and statistics to represent probability distributions and define a semi-metric (MMD, maximum mean discrepancy; also called N-distance or energy distance), with numerous successful applications. The representation is constructed as the expectation of the feature map defined by a kernel. As a mean, its classical empirical estimator, however, can be arbitrary severely affected even by a single outlier in case of unbounded features. To the best of our knowledge, unfortunately even the consistency of the existing few techniques trying to alleviate this serious sensitivity bottleneck is unknown. In this paper, we show how the recently emerged principle of median-of-means can be used to design minimax-optimal estimators for kernel mean embedding and MMD, with finitesample strong outlier-robustness guarantees.
منابع مشابه
Application of Outlier Robust Nonlinear Mixed Effect Estimation in Examining the Effect of Phenylephrine in Rat Corpus Cavernosum
Ignoring two main characteristics of the concentration-response data, correlation between observations and presence of outliers, may lead to misleading results. Therefore the special method should be considered. In this paper in to examine the effect of phenylephrine in rat Corpus cavernosum, outlier robust nonlinear mixed estimation is used. in this study, eight different doses of phenylephrin...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملTesting the Exactitude of Estimation Methods in the Presence of Outliers: An accounting for Robust Kriging
Estimation of gold reserves and resources has been of interest to mining engineers and geologists for ages. The existence of outlier values shows the economic part of the deposits subject to the fact that don’t depend on the human or technical errors. The presence of these high values causes a pseudo dramatically increment in variance estimation of economical blocks when applying conventional m...
متن کاملRobust Estimation in Linear Regression Model: the Density Power Divergence Approach
The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...
متن کاملRobust Regression
1. Introduction One of the most important statistical tools is a linear regression analysis for many fields. Nearly all regression analysis relies on the method of least squares for estimation of the parameters in the model. A problem that we often encountered in the application of regression is the presence of an outlier or outliers in the data. Outliers can be generated by from a simple opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.04784 شماره
صفحات -
تاریخ انتشار 2018